虽然开放数据库是深度学习(DL)时代的重要资源,但它们有时使用“Off-Label”:为一个任务发布的数据用于不同的数据。这项工作旨在强调在某些情况下,这种常见做法可能导致偏见,过于乐观的结果。我们展示了这种逆问题溶剂的这种现象,并展示了它们的偏置性能如何源于隐藏数据预处理管道。我们描述了两个典型的开放式访问数据库的预处理管道,并研究了对为磁共振成像(MRI)重建开发的三种熟发的算法的影响:压缩传感(CS),字典学习(DICTL)和DL。在这种大规模研究中,我们进行了广泛的计算。我们的结果表明,CS,DICTL和DL算法在看似适当的数据上天鹅训练时,CS,DICTL和DL算法产生了系统地偏见:归一化的根均方误差(NRMSE)随着预处理程度而一致地改善,显示人工增加25%-48%在某些情况下。由于这种现象通常是未知的,因此有时被公布为最先进的结果;我们将其称为细微的数据犯罪。因此,这项工作提出了关于大数据的天真的野外标签的红旗,并揭示了现代逆问题溶解于所产生的偏差的脆弱性。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
As the performance of large language models rapidly improves, benchmarks are getting larger and more complex as well. We present LMentry, a benchmark that avoids this "arms race" by focusing on a compact set of tasks that are trivial to humans, e.g. writing a sentence containing a specific word, identifying which words in a list belong to a specific category, or choosing which of two words is longer. LMentry is specifically designed to provide quick and interpretable insights into the capabilities and robustness of large language models. Our experiments reveal a wide variety of failure cases that, while immediately obvious to humans, pose a considerable challenge for large language models, including OpenAI's latest 175B-parameter instruction-tuned model, TextDavinci002. LMentry complements contemporary evaluation approaches of large language models, providing a quick, automatic, and easy-to-run "unit test", without resorting to large benchmark suites of complex tasks.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
NLP基准在很大程度上主要集中在短篇文本上,例如句子和段落,即使长文本在野外占相当数量的自然语言。我们介绍卷轴,这是一套需要在长文本上推理的任务套件。我们检查现有的长文本数据集,文本自然是长期的,同时优先考虑涉及在输入上扫描信息的任务。滚动包含概述,问题应答和自然语言推理任务,包括多个域,包括文学,科学,业务和娱乐。初始基线(包括啰覆编码器),表明滚动有充足的改进空间。我们以统一的文本到文本格式提供所有数据集,并托管Live Refordboard,以促进模型架构和预用方法的研究。
translated by 谷歌翻译
谷歌的运营洪水预测系统是制定的,为机构和公众提供准确的实时洪水警告,重点是河流洪水在大型潮流的河流中。它在2018年开始运作,自从地理位置扩展以来。该预测系统由四个子系统组成:数据验证,阶段预测,淹没建模和警报分配。机器学习用于两个子系统。阶段预测采用长短期内存(LSTM)网络和线性模型进行建模。使用阈值和歧管模型计算洪水淹没,前者计算淹没程度,后者计算淹没程度和深度。本文首次提供的歧管模型提供了一种机器学习替代洪水淹没的液压建模。在评估历史数据时,所有型号都可以实现可操作使用的足够高的度量指标。 LSTM表现出比线性模型更高的技能,而阈值和歧管模型达到了类似的性能度量,以便在淹没程度上进行建模。在2021年的季风季节期间,洪水预警系统在印度和孟加拉国运营,覆盖河流的洪水区,总面积287,000平方公里,拥有350多万人。超过100米的洪水警报被发送给受影响的人口,相关当局以及紧急组织。系统上的当前和未来的工作包括将覆盖范围扩展到额外的洪水易发位置,以及提高建模能力和准确性。
translated by 谷歌翻译
Fine-tuned language models use greedy decoding to answer reading comprehension questions with relative success. However, this approach does not ensure that the answer is a span in the given passage, nor does it guarantee that it is the most probable one. Does greedy decoding actually perform worse than an algorithm that does adhere to these properties? To study the performance and optimality of greedy decoding, we present exact-extract, a decoding algorithm that efficiently finds the most probable answer span in the context. We compare the performance of T5 with both decoding algorithms on zero-shot and few-shot extractive question answering. When no training examples are available, exact-extract significantly outperforms greedy decoding. However, greedy decoding quickly converges towards the performance of exact-extract with the introduction of a few training examples, becoming more extractive and increasingly likelier to generate the most probable span as the training set grows. We also show that self-supervised training can bias the model towards extractive behavior, increasing performance in the zero-shot setting without resorting to annotated examples. Overall, our results suggest that pretrained language models are so good at adapting to extractive question answering, that it is often enough to fine-tune on a small training set for the greedy algorithm to emulate the optimal decoding strategy.
translated by 谷歌翻译
目前的NLP数据集可以通过母语扬声器来解决,以相对容易地解决。我们提出了基于隐秘填字游戏的大型数据集,这是语言学繁琐和自然的。Cryptonite中的每个例子是一个隐秘的线索,短短语或具有误导性表面读数的句子,其解决需要消化的语义,句法和语音字画面以及世界知识。虽然顶级专家可以解决近100%的准确性,但隐秘的线索即使对于经验丰富的求解器也可以解决挑战。Cryptonite对当前模型是一个具有挑战性的任务;在470K隐秘线索上进行微调T5大量,精度仅为7.6%,符合基于规则的线索求解器(8.6%)的准确性。
translated by 谷歌翻译